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Abstract

We describe the various techniques that have been proposed for constructing
non-parametric confidence intervals using the bootstrap. These include bootstrap pivotal in-
tervals, percentile and bias-corrected percentile intervals, and non-parametric tilting intervals.
These methods are small sample improvements over the usual 4 intervals. We discuss them
in detail, outlining the underlying assumptions in each case. We show how the non-parametric
tilting interval can be viewed as an extension of a bootstrap pivotal interval, and suggest a
number of generalizations. Finally, the various intervals are compared in a small simulation
study.
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BOOTSTRAP CONFIDENCE INTERVALS
Robert J. Tibshirani

1. Introduction.

Recently, a number of techniques have been proposed for constructing confidence inter-
vals using the bootstrap (see Efron(1981) and Schenker(1983)). These techniques are non-
parametric in nature, and are designed to work well over a wide variety of situations. Because
they are based on the bootstrap, they can be used in situations in which the “parameter” is an
extremely complex functional of the distribution and an exact analysis would Be impossible.

In this paper, we describe the various bootstrap methods that have been suggested for
constructing confidence intervals and compare them in a few examples. The paper is largely
expository, although some new ideas are presented for the construction of intervals through
non-parametric tilting (Sections 7 and 8). Unfortunately, we offer little in the way of practical
advice for choosing among the various intervals. Research in this area is greatly needed.

2. The Problem and Some Notation.

We observe z,,...z, assumed to be realizations of random variables Xj,...X, ~ i.i.d F.
The distribution F is unknown and the problem is to construct a confidence interval for the
parameter § = §(F). By a confidence interval, we mean lower and upper points L = L(z;, ...z,)
and U = U(z,, ...zn) such that P(L < § < U) =1 - 2a, where P(-) denotes probability under
the true distribution F. Since the intervals are to be non-parametric, we would ideally require
that this hold for all F. None of the intervals described here claim to satisfy this, although the
non-parametric tilting interval seems to come closest. We will confine our discussion to central
intervals, i.e. intervals (L,U) such that P( < L) = P(§ > U) = a. Non-central intervals can
be obtained through obvious modification.

Given X),X3,...Xn, (X; can be a scalar or vector random variable), we estimate # by
6= 6(FX) where FXis the empirical distribution function of Xj,...X,. The observed value of
b is 6,5, = 6(F,) where F, is the empirical distribution function of z,,...z,.

We let W be a random vector with W; > 0, 37 W; = 1 and w be a realization of
W. Let F,(w) be the distribution putting mass w; on z;, ¢ = 1,2,..n. Many of the tech-
niques will utilize “bootstrap sampling”— that is, sampling from z,, z,,...z, with replace-
ment. This is equivalent to sampling W from the rescaled multinomial Mult(n,®°)/n, where
v’ = (1/n,1,n,..1/n). We’ll use & to indicate bootstrap sampling and a bootstrap value
obtained in this way will be denoted by §* = é(F,.(n)). We'll refer to a bootstrap sample
either by its weight vector ®, or by X* = (X}, X3,...X;). Finally, B will denote the empirical
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distribution function of §* under & (“the bootstrap distribution”).

8. Overview.

Frequentist confidence intervals are based on a test function, say (X, 6,), appropriate for
testing H : @ = 6;. The interval is constructed as follows. For each trial value §;, we include
0, in our confidence interval if we would accept H in a 1 — 2a size test based on t(X,6,;). This
procedure requires knowledge of the distribution of t(X, 8,) for each #,. Usually, a simplifying
assumption is made— that t(X,6;) is pivotal, that is, has a distribution not depending on
0;. With this assumption, it is not necessary to consider each trial value §; separately. We
assume some parametric distribution for ¢(X, 8, ), then invert the pivotal to yield the confidence
interval. A simple example is X, X2,...X,, ~ N(8,1). Then a confidence interval for § is found
by inverting the pivotal X — 8§, whose distribution is ¥(0,1/n).

The Bootstrap Pivotal, Percentile and Bias-Corrected Percentile intervals (Sections 4, 5,
and 6) are non-parametric analogues of parametric pivotal intervals. The pivotal distribution
is not assumed known; instead it is estimated non-parametrically using the bootstrap. In
Sections 4 and 5 we provide the “recipes” for constructing these intervals and outline the
underlying assumptions. In Section 6, we discuss the appropriateness of the various intervals

in a few simple problems.

The Non-Parametric Tilting interval (Section 7) is more ambitious than the pivotal-
based techniques. Instead of assuming the existence of a pivotal, it attempts to estimate the
distribution of § — 8, for each trial value ;. A confidence interval is then formed consisting of
values of 6; for which we would accept the hypthesis H : § = 6;.

The Estimated Psvotal snterval (Section 8) is a compromise between the two approaches.
The data is used to suggest an appropriate pivotal quantity, then a bootstrap pivotal interval
is constructed.

In Section 9 we compare all the intervals in two numerical examples.



4. Bootstrap Pivotal Intervals.

4.1. The Simple Pivotal
We assume that 6 — § is a pivotal quantity, that is
6-0~H (A1)
where H is a distribution not involving ¢, and also that approximately
0° b5 * H (A2)

Assumption (A2) is based on the premise that if F, is close to F, the bootstrap distribution
of 6* — 8,5, will be close to that of  — 8, as long as 8(-) is a reasonably smooth functional.
Of course, if H is a continuous distribution, then (A2) is at best an approximation, since the
bootstrap distribution is necessarily discrete. The intervals described in this section and the
next section all use this kind of bootstrap approximation. To simplify the notation, we will
ignore the fact that st 32 only an approzimation.

Under (A1) and (A2), we have 1 — 22 = P(H Ya) < 6 —0 < H™}(1 - a)) = P(§ -
H Ya) <0< 6-H(1-a)).

Substituting 0,4, for # and noting that H=1(:) = B~}(-) — d.s,, we obtain the Bootstrap

Psyotal interval:
0 € (2008, — B (1 - @),20,5, — B~(a)) (1)

4.2. Other Pivotals

The bootstrap pivotal interval can be based on an arbitrary pivotal ¢(X,6), as long as
it is monotone in §. We assume ¢t(X,0) ~ H, t(X‘,éob,) < H, where t(X,§) is monotone
decreasing in . Inverting the pivot as above, we obtain

6€(t; (H'(1-a)),t3 (H () (2)

where t;(-)=inverse of ¢(-,-) with respect to the second argument.

The bootstrap pivotal interval is used by Efron (1981) in the form of a “bootstrap t” and
by Schenker(1983), who calls it the “substitution method”. We have introduced the obvious
name “bootstrap pivotal interval” here.
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4.3. The Role of Nuisance Parameters

We can think of an arbitrary distribution G as consisting of two parts, say G = (6, n),
where 6 = §(G) is the parameter of interest and # = n(G) is a vector of nuisance parameters,
possibly infinite dimensional. The true distribution can be written as F = (Otrues Birue). With
this decomposition, we can say more clearly the meaning of the statement “¢(X,6) ~ H, H not
involving §”. What we’re really assuming is that F is a member of some family of distributions
7 existing in the space of possible distributions. The members of 7 correspond to different 8
values and are characterized by the property ¢(X, ) ~ H. Because of this pivotal assumption,
we don’t have to know the structure of (or estimate) the entire family 7. Only a single member
of ¥ need be estimated. The empirical distribution function F, estimates that member (i.e.
(Fna = (éob,,r‘)ob,)), and from this we obtain the distribution H. By construction, the interval
will have correct coverage for F € 7. :

A family like 7 also underlies the percentile and bias-corrected percentile intervals (dis-
cussed next). The non-parametric tilting interval (Section 7) doesn’t make a pivotal assump-
tion, and essentially tries to estimate the entire family.

5. Percentile Intervals.

5.1. Uncorrected Intervals

Here we assume Al and A2, and further that
H is symmetric around 0 (A3)
In this case, the pivotal interval (1) becomes:
b€ (B (a),B7!(1-0)) (3)

Efron calls this the Percentile Interval since it uses the percentiles of §* as “percentiles” of 4.

5.2. Generalization of the Percentile Interval
If a symmetric pivotal exists on some other scale, i.e.
9(6) - 9(0) ~ H (A4)

and

9(6*) = g(boss) * H (45)



with H symmetric around 0 and g(-) is an unknown, monotone increasing function, then as in
(3) we get as an interval for g(8):

9(0) € (G™}(a),G7*(1 - a)) (4)
where @ is the distribution function of g(8*). Transforming back to the 0 scale gives
€ (571G (a),g (G (1~ 0)) (5)

or
6€ (B(a), B~} (1-a)) (6)
which $s again the percentile interval. Thus the percentile interval has the correct coverage if

a symmetric pivotal exists on any scale. Conveniently, we don’t have to know g(-) because the
resultant interval doesn’t depend on g(-).

There is a simple connection between the bootstrap pivotal interval based on 6 — 6 and
the percentile interval. Writing (2605, — B~1(1 - a), 2005, — B~1(a)) as (G, — [B-1(1-a)-
éol,,]), Bose + [éob, — B~1(a)]), we see that the percentile interval is the bootstrap pivotal interval
reflected about the point Oobs-

5.3. Bias-Corrected Percentile Intervals

5.3.1 Normal Correction.

If the distribution H in A4 and AS is symmetric around u # 0, the percentile interval
will be biassed and will not have the correct coverage. This would occur as a result of bias in
the estimator 6. It turns out that if we are willing to assume a parametric form for H, then u
can be estimated and a corrected interval can be derived. As was the case for the percentile
interval, the corrected interval will not depend on the transformation g(-).

Since P(g(6*) < g(bos,)) = P(d* < f.8,), We can use the latter to estimate the bias. Using
this correction, we then match the distributions of g(f) — g(9) and g(6*) — g(f,s,) on the g(-)
scale, then transform back to the # scale.

As an example, suppose we choose H = N(u,1). Then
9(8) = g(0) ~ N(0,1) — u (7

and
9(6*) — 9(Boss) > N(0,1) +u (8)
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We can solve for u by noting that P(g(8*) < g(f.s,)) = ®(—u) = G(g(boss)) = B(Bos,) so that
b=u=—0"1(B(o,)). (2(-) denotes the cumulative distribution function of N(0,1)) Now
from (7)

P(9(6) = 9(8) < 9(£) = 9(8obs)) = B(g(t) — 9(doss) + ) (9)

and from (8) we obtain
B(t) = P(8* < t) = P(g(8*) < g(t)) = &(g(t) - 9(6oss) — b) (10)

Solving for g(t) — g(fos,) in (10) and substituting into (9) we have
P(g(6) — 9(8) < g(t) — 9(8oss)) = B(37*(B(2)) + 2b) (11)

Finally, to get a 1 — 2a percent confidence interval, we set the right side of (11) equal to a
and 1 — a, and solve for ¢t to obtain

0 € (B~ (®(z4 — 2b)), B~} (®(21-a — 2b))) (12)

where z, denotes the pth quantile of ®. Interval (12) is called the Bsas-Corrected Percentile
Interval. The parametric assumption N(u,1) turns out to be not as restrictive as it appears.

If we instead let H = N(u,0?), with 02 unknown, and repeat the above derivation, we get
b=% = -3 (B(d,,)) and we obtain the same interval (12) .

o

Note then when b = 0, the bias-corrected percentile interval reduces to the percentile
interval. Hence we can think of the bias-corrected interval as a “fine-tuning” of the percentile
interval.

5.3.2 Other Symmetric Location Scale Families.

In the bias-corrected interval above, we can just as well assume that H is some other
symmetric, location scale family, say H(z |u,0) = Ho(*"%). This gives the bias-corrected
interval

8 € (B™}(Ho(ho — 2b)), B~ (Ho(hy1-a — 2b))) (13)

where b = ~Hy Y(B(6,5,)) and h, denotes the pth quantile of Hp.

A natural question to ask is: how much difference does the choice of Hy make? Nat-
ural candidates to compare with the normal are symmetric, long tailed distributions. Ben-
jamini (1983) provides an appealing definition of long-tailedness. Suppose F and G are both
symmetric about the origin. Then G is said to stretched (or long tailed) compared to F if
G~(p)/F~'(p) is an increasing function of p, for 1/2 < p < 1. This definition reflects the
intuitive meaning of long-tailedness, that the quantiles of G are “farther out” than those of F.
Under this definition, distributions like the ¢, logistic and cauchy are stretched with respect to
the normal, as we would expect.



Now suppose Hj is stretched with respect to ®. Assume B(f.,) = ¢ > .5, so that Oops is
biassed upward, and b = —®~}(B(8)) < 0. Then the bias correction under Hy will be in the
same direction as the bias-correction under ®, but will be smaller. The proof of this fact is
easily derived from Benjamini’s definition above. Denoting, as before, the pth quantiles of &
and Hy by z, and h, respectively, we note that Ho(h, + 2hg) > a. Hence

O~ (Ho(ha + 2hy)) K ¢ a) _ 24

Hy'(Ho(ha +2hg)) ~ Hg'(a)  ha
This implies 1 (Ho(ha + 2hg)) < za + 22a(hg/ha) < za + 224. Thus &(ze + 224) > Hy(h +
2hg) > a.

A similar argument shows that if ¢ < .5, then ®(2, + 22;) < Hy(h, + 2h) < a, and the
corresponding results hold for the upper quantile. The above proof requires that ko + 2hg < 0.

(14)

This will be the case unless the bias in é,,;, 18 80 large that g is near 1 — a.

The numbers in Table 1 show the amount of bias correction (that is (Ho(ha + 2hg),
Ho(hi-o + 2hy)) for the normal, logistic and the cauchy distributions, when a = .05.
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Table 1
q Normal Logistic Cauchy

40  (.015,.869) (.023,.884)  (.045, .944)
45 (.027, .916)  (.034,.927)  (.050, .950)
55 (.084,.973) (.073,.966) (.050, .950)
60  (.131,.985)  (.106, .977)  (.056, .955)

The choice of a symmetric pivotal distribution appears to make little difference. The
effect of an assymetric pivotal distribution, however, can be large, as Example 1 will show.

5.3.3 Another Justification for the Bias-Corrected Interval
In place of A4 and A5, we could assume

h(6-6)~H (As)

and
h(8* — b,5,) ~ H (AT)

with H symmetric, and A increasing and anti-symmetric (h(~2z) = —h(z)). Letting H be a
location-scale family, we again obtain the bias-corrected percentile interval (13) . When H is
symmetric around O, 0 — 6 is symmetric around 0 and the interval reduces to the percentile
interval.

Finally, we could replace h(f — 6) and h(6* - éog,) by h(é/ﬂ) and h(é‘/éob,) respectively,
with A(1/z) = —h(z), and again the bias-corrected interval emerges.
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6. Comparison Between the Bootstrap Pivotal and Percentile
Intervals.

The bootstrap pivotal and percentile intervals differ in their assumptions. In constructing
the bootstrap pivotal interval, we had to specify the exact form of the pivotal but we assumed
nothing about its distribution. On the other hand, in building the percentile interval, knowl-
edge of the exact form of the pivotal was not necessary but we did require that its distribution
be symmetric around 0. For the bias-corrected percentile interval, we weakened that assump-
tion to one of symmetry around any point, but we paid a price: it was necessary to specify a
distribution for the pivotal.

Which of these intervals is better depends on the problem. It is helpful to look a few
simple examples. In each case, the data are assumed to be gaussian.

o The Mean: § = E(X), variance known. The bootstrap pivotal interval based on 6 — § and
the percentile interval will give very similar results, and both will have approximately the
right coverage.

o The Correlation Coefficient: X = (Y,Z) and 0§ = E(Y — E(Y))(Z - E(Z))/{E(Y -
E(Y))2E(Z — E(Z))*}"/?. The random variable tanh~—10 — tanh='4 is approximately
N(8/(2(n — 38),1/(n — 3)). Hence the bootstrap pivotal interval based on t(f,0) =
tanh=*f — tanh~10 and the bias-corrected percentile interval (using the normal family)
both should work well. The uncorrected percentile interval will be biassed.

e The Variance: 0 = E(X—E(X))2. The random variable é/ 0is x2_,, hence the bootstrap
pivotal based on t(4,8) = log § — log 8 will have approximately the right coverage. The
distribution log x2 is not symmetric, however, so the percentile intervals may not work
well (see Example 1). It is clear that a transformation to a symmetric pivotal doesn’t
exist here since such a transformation must also remove the dependence of the variance
on 6. A simple delta method calculation shows that only g(6) = log§ achieves this.

The above examples represent some of the problems that are well understood. In most
situations, however, matters are much more difficult. To construct a bootstrap pivotal interval,
we first need to specify a quantity ¢(X, #) that is approximately pivotal. This alone is a difficult
task unless we know something about the underyling distribution. Now suppose we are able to
specify a pivotal ¢(X,0). Then if ¢(X,0) ~ H and ¢t(X*,0.,) ~ H, the resulting interval will
have the correct coverage. In some problems, however, the bootstrap distribution of £(X*, 6,4,)
can be a poor approximation to H. One such example is the following. Consider the situation
X1,X2,...X15 ~ e7172% for z > —1. The bootstrap pivotal interval for # = E(X) based on
X — 6 has poor coverage because the distribution of X* — X, is not a good approximation
to the distribution of X — §. This is because the high positive correlation between X and
the sample standard deviation S causes underestimation of the scale when Z is smaller than
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¢ and overestimation of the scale when Z is greater than . Basing the interval on (X - 6)/§
alleviates this problem and the resultant interval has good coverage.

As far as the percentile methods are concerned, an important question is: when does a
transformation to a pivotal quantity exist? (Efron (1983) discusses normalizing transforma-
tions). If such a transformation existed for a broad class of problems, the percentile (and
bias-corrected percentile) intervals would be attractive because they eliminate the problem of
having to specify a pivotal.

Unfortunately, we have no solid answers to these questions; instead we move on to a
different technique that sidesteps these difficulties.
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7. Non-Parametric Tilting Intervals.

7.1. Definition

As mentioned in the overview, the “Non-parametric tilting” interval (Efron (1981)) is
fundamentally different than the preceding methods. Instead of assuming the existence of a
pivotal, it attempts to estimate the distribution of the test function § — 8, for each value of
0,. Then, as in classical testing theory, a confidence interval is formed consisting of values of
6, for which we would accept the observed data in a test of H : § = 6;.

We begin by assuming that the true distribution F is supported only on zi,...z,. (We’'ll
see later why this is necessary). Let w = (wy,...w,), with w; > 0 and 3> 7 w; = 1. Recall
that F,(w) is the distribution putting mass w; on z;, ¢ = 1,2...n and 6(w) = 0(F(»)). Then
the true distribution F can be represented by @iy, (i.e. F = F,(9(y.)). Let Py denote
probability under Mult(n, ®)/n, and denote the observed distribution by ®°® = (%,...2). Then

the Non-parametric tilting interval is (810w, 0up) given by
Biow = inf{0; : Pa, (6(W) 2 Go1) 2 a} (15)

and

Oup = sup{0; : Pg,l(é(W) < bops) 2 a) (16)
where w0y, minimizes D(w, 0?) subject to f(w) = 0, and D(w, ") is the (back;a'rd) Kullback-
Lesbler distance between © and w°:

D(w,w°) = Z”:w.-log(nw.-) (17)
1

In words, oy is the smallest parameter value 8, such that if the data came from a distribution
with parameter 1, there is probability at least a of observing 808,. Similarly for 0up. Given
any value 0;, there may be more than one distribution w with é(w) = 0;, 80 we use our “best
guess”— the closest distribution in Kullback-Leibler distance to our data, subject to é(c) =0,.

From the definition of the non-parametric tilting interval, it certainly isn’t clear why it
should have the correct coverage. We investigate this in Section 7.5. We will first discuss how
(616w, 0up) can be computed.
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7.2. Finding (fiow, bup)

In order to compute (fj,y, dup), we need to find the distribution w that minimizes D(w, w’)
subject to §(w) = #,. Minimization by the method of lagrange multipliers yields weights of

the form
eDit

wf = S (18)

where D; = '%%l evaluated at w*. Note that the observed distribution w® corresponds to

t = 0. The one dimensional family (18) contains the closest distributions to w° for each fixed
value of 6(w). It is illustrated in Figure 1.

Figure 1

(1,0,0)

(0,1,0)

(0,0,1)

The triangle represents the simplex $” = {w : w; 2 0,7 ®; = 1} for n = 3. The statistic
6 = 6(F,(w)) can be thought of a surface defined over the simplex, and the curve passing
through the sample point ®° is the one-dimensional family defined by (18) . Consider any
distribution (say ®©*') in this family. Suppose 9(w") = #'. Then ©* is the closest distribution
to w? (i.e. minimizes D(w, 0°)) having 6 value ¢'.
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To find 61, and fyp, it is necessary to compute Pyt (8(W) > 6,3,) and Py (6(W) < b,50)
for many values of t. When 6(W) is the sample mean, the distribution of (W) under any w*
turns out to be a simple exponential tilt of the distribution under ®°. As a result, it is only
necessary to simulate the distribution of §(W ) under ©°; the remaining distributions can then
be derived analytically. This is the reason for the name “non-parametric tilting interval” (see
Efron (1981) for details).

For non-linear statistics, the tilting property no longer holds. Hence to determine 8,,,,
we need to search along w0’ until P.,o(é(W) > 5,,5,) is exactly equal to a. (and similarly
for 8,,). (We have labelled these distributions wios and wiv in Figure 1). Now for each ¢,
direct computation of Pyt(6(W) > 6,s,) requires a monte carlo approximation, and this would
make the search procedure far too costly. Instead, we can generate B samples from a fixed
distribution w;;,.4, and use as our monte carlo estimate:

My, (W*)

LY ) (19)

n
Pot6W) 2 o) = 5 Y IEW) > biss)
1
where W' are the proportion vectors of each of the generated samples and My, (W) indicates
the multinomial(n,w) probability of vector W. This estimate is unbiassed since its expected
value is E.,,,.M{I(é(W") > 0:,;,,)M,,«(W")/Mwﬁm(W")} equals Py(6(W) > 6,4,). It reduces
to the usual Monte Carlo estimate of P,,,s(é(W) > éog,) when 0,04 = ©'.

Wise choice of wy,;.4 can make the variance of the estimate in (19) small. The theory of
importance sampling suggests that we should try to make the summand in (19) as constant as
possible. The choice of ©;z.4 = ©° accomplishes this. Using w0 has the additional advantage
that if a percentile interval has been found for a given data set, no further function evaluations
are needed to find the tilting interval.

7.3. Approximating the derivatives D;

In the above, we have ignored the fact that D; is a function of w, so that (18) defines
w’ only implicitly. As an approximation to D;, we use D? = %gfl evaluated at ©°. If 6(w)
is too complex to make calculation of D possible, we can use the jackknife estimate of the

directional derivative U; given by
U; = (n — 1)[0(Fa(0-:)) — us] (20)

where w_; = (1/(n - 1),1/(n - 1),...1/(n = 1),0,1/(n = 1),...1/(n — 1)), zero being in the ith
place. Since D? = U;+constant, (see Efron(1982) pg 37-41 for details), U; can be used in place
of D{ in formula (18) .
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7.4. The Non-parametric Tilting Interval as a Generalization of the Boot-
strap Pivotal Interval

The interval (810w, fup) can be derived as a generalization of a bootstrap pivotal interval
based on § — 4. In the bootstrap pivotal case, we proceeded as follows. We began by assuming
that § — § ~ H, H not involving §. We then estimated H by assuming that the bootstrap
version of this, 6* - 505, also had the distribution H. Using this bootstrap distribution, the
pivotal was inverted to yield the interval. Note that the bootstrap approximation consisted
solely of estimating the unknown F by Fy,, the unrestricted maximum likelihood estimator of
F.

In the present case, we don’t assume that §(W) — 0 is pivotal, and hence we‘ll write
6(W) — 8 ~ Hy to indicate that H depends on 0. In order to construct the interval, we need
to estimate Hp, for each trial value ;. To do so, we first compute the restricted maximum
likelihood estimator of F, subject to 8( F) = #;. Since we are assuming that F has support only
on zj,Z3,...Z,, this restricted m.l.e. corresponds to a set of weights, say wy,. Proceeding as in
the pivotal case, we assume that under wy,, 6(W ) — 6, also has distribution Hy,. Now to obtain
the confidence interval, we can’t just “invert the pivot” since Hp, depends on §,. Instead,
we consider each 6; sepaArately, inclqung 9, in the confidence interval if Pw,l(é(W) -4 >
0o6s — 01) 2 @ and P‘”h (6(W)— 8, < 0,5, — 01) 2 a. Finally, equivalence between maximizing
the multinomial likelihood L = []] w; and minimizing the Kullback-Leibler distance almost
yields (15) and (16) . We say “almost” because maximizing L subject to §(w) = 0; is
equivalent to minimizing the “forward” Kullback-Leibler distance D(0° ) = 3} log i~

*

subject to é(v) = 0. Strictly for computational reasons * we instead use the “backward”

Kullback-Leibler distance D(w, »°).

Note that if we don’t restrict the support of F to z;,2,...25, the maximum likelihood
estimator of F subject to §(F) = 6, is pathological in many cases, and not of much use in
constructing the interval. Alternatively, we can impose smoothness restrictions on F (see
Section 7.6).

Figure 2 illustrates the level surfaces Cp of constant 8 (Cp = {w : 6(w) = 8}) together with
the various quantities used in deciding whether to include 6 in (810w, fup). (The distribution
w,w appearing in Figure 2 should be ignored for now— it will be important in discussing
a variant of this interval in Section 7.6). Figure 2 makes clearer the distinction between
the bootstrap pivotal and non-parametric tilting intervals. Both intervals use the distance
function §(W) — @ to measure the distance between a point W and the level surface Cy. The
bootstrap pivotal method assumes that §(W) ~ 0 has a distribution not depending on ¥, i.e.
the distribution of §(W) — 8 is the same no matter which level surface ®y. is on. As a result,
we don’t have to estimate the distribution of W for each 8, and we need only sample from the

* The forward Kullback-Leibler distance yields weights of the form ¢/(1 +¢D;} which we have found difficult

to deal with computationally.
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distribution w° to deduce the interval. On the other hand, the non-parametric tilting interval
doesn’t assume §(W) — @ is pivotal, hence we have to 1) estimate the distribution of W for
each #— our estimate is wy and 2) sample from each wy to determine whether to include ¢ in
the confidence interval.

Figure 2
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7.6. Coverage of the Non-Parametric Tilting Interval

Will the interval (f1,w, fup) cover the true value with probability at least 1 — 2a, for all
wiu.? To investigate this, we must state clearly what we mean by a new realization of the
interval. The points z;,2,,...Z, are fixed, and the true distribution @y, has mass only on
Zy,Z2...2,. A new sample from @y, corresponds to some weight vector ©"*®. From this
new sample there will correspond ®3°®, the closest distribution to ®"* on the level surface
Cj for some fixed 8. Now let £(6) be the upper a percent point of the distribution of 6(W)
under ©™¢®. Then the non-parametric tilting will not include @ on the left (i.e. 1o will
be greater than ) if 6,5, > £(6). The miscoverage probability on the left will therefore be
JP(6(W) > £(60))dQ(£(6) where Q(£(0)) is the distribution of £(9) under w;,y.. (And similarly
for the miscoverage on the right.) This quantity can not be computed analytically, but we
can see that two factors will determine the coverage: 1) how far away the wj**’s are from
©irye and 2) how much the £(0)’s change away from w;,,.. (Note that if each wg*” equalled
©irue, £(0) would equal the upper percent point of 6(W) under ®(ry., and the coverage would
exactly equal a.) A better understanding of these factors might lead to improvements in the
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non-parametric tilting interval. One such attempt is made in Section 7.7.

7.6. Smooth Tilted Intervals

Instead of assuming that F is supported on z;, 22, ...Z,, we could assume instead that
F belongs to a smooth family. A convenient choice for this family is F, () convolved with a

"\ w; -z
HOEDD Tk (y 3 ) (21)
1
The window parameter h can be estimated from the data or more simply, a reasonable fixed

symmetric kernel k(-):

value (say h = .25) can be used.

The form of the weights that minimize D(w, w°) = E,, log gw/gyo appea.rS quite difficult
to obtain for general kernels k. (Since the weights are to be used as part of a computationally
intensive procedure, an explicit expression is required.) All is not lost, however. When the
supports of the k(¥5%)’s are disjoint, the minimizing weights are exactly of the form (18)
independent of k(-). Thus, as an approximation, we can use weights of the form (18) . This
should be adequate for small A.

7.7. Another Variant of the Non-Parametric Tilting Interval

A variant of the (1o, 04p) interval can be obtained by use of a test function other than
§(W) — 6. Recall that wy is the closest point (in backward Kullback-Leibler distance) on Cy
to w®. Then a natural measure of the plausibility of a value 6 is the distance D(wy, ©°). In
fact, we will also want to take into account on which “side” of Cy the observed distribution
w0 lies. This can be achieved by attaching a sign to the distance in some consistent fashion.
The interval defined below is similar to the one introduced by Efron (1984) for a certain class
of parametric problems.

For an arbitrary distribution w0, let @y o be the closest point in backward Kullback-Leibler
distance on Cy to w. Define the signed (backward) Kullback-Leibler distance by $ D(wg «,®) =
D(wp ., o) if § > 6(w) and —D(wg,e,®) otherwise. Now consider a trial value §,. Then we
include 4, in our confidence interval if

P"o,,w (SD("O,W’W) 2 SD(UOUOO)) 2a (22)

and
P.,al'W(SD(v,,W,W) < $SD(wy,,©°%) > a (23)

Figure 2 again illustrates this, the only difference being that the distance from a point W to
the level surface Cy is measured by minimum Kullback-Leibler distance instead of by §(W)— 0.
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How would this interval compare to the (5e,0up) interval? If the level curves are such
that SD(w,py,®0) = 0— (W), (or some monotone function of § — (W )) then the two methods
are identical. This follows simply by the definition of the two intervals. In general, however,
they will be different. The parametric analogues of these procedures suggest that the interval
based on SD(w,w,W) might be less sensitive to departures of wy from wyy,, and to the
changing shape of the level surfaces. On the other hand, it appears to be much more difficult
to compute. The reason is that for each bootstrap sample, the distance SD(wy g/, W) must
be computed, and this requires an expensive search. (Only one such search was necessary
in computing the non-parametric tilting interval.) Some clever computing tricks might make
computation of this interval possible, but this is still under investigation.

8. Estimated Pivotal Intervals.

8.1. Definition

We propose here a compromise between the pivotal methods and the non-parametric tilt-
ing technique. The idea is to use the estimated distributions provided by the tilting technique
to estimate the form of a pivotal. This pivotal in then used as the basis for a bootstrap pivotal
interval (as described in Section 4).

Assume 8 — 0 ~ H and 6* — 8,3, & H where H has variance v(8). Then a one term Taylor
expansion shows that g(0) — g(0) has approximately constant variance, where

& n
g9(6) = / dt (24)
¢ (o)}
A convenient family for v(8) is v,(6) = [0 |? for 0 < p < 2. Then g,(8) = |8 |2-#/2 i
p # 2 and g,(8) = log |4 ].

8.2. Estimation of p

We use the family of closest distributions to w® to estimate v(6) for various values of
0. These estimates are obtained using the computational trick of Section 7. A simple linear
regression of log #(#) on |8 | then provides an estimate of p.

Given the estimate p, we then utilize the pivotal g,-,(é) — g5(0) in the bootstrap pivotal
interval given by (2) .
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9. Some Numerical Examples.

To illustrate the various methods discussed here, we compared them in two problems.

Example 1. The Variance: 8 = E(X - E(X))?, X ~ N(0,1).
As we discussed earlier, we would expect that the bootstrap pivotal interval based on

0/ 0 to perform well, since 5/ 6 is a pivotal, but would expect the percentile and bias-corrected
percentile intervals not to do as well.

We performed a small simulation study to investigate this. 1000 samples of size 20 were
generated and central 90 percent confidence intervals were constructed for each sample. The
results are shown in Table 2. The normal theory interval obtained by pivoting é/ ¢ around the
percentage points of x2g can be thought of as the “correct” interval and had actual coverage
close to 90 percent. The bootstrap pivotal interval does fairly well, while the others display
too low coverage. The percentile interval is especially poor. The non-parametric tilting and
estimated pivotal intervals captured the asymmetry of the normal interval better than the
bias-corrected interval, but their coverage was still too low.

It’s not surprising that the intervals based on § — 8 or g(f) — g(#) didn’t perform well:
this particular problem is difficult because the variance of 6 depends on 6. Only the bootstrap
pivotal interval, which utilizes knowledge of this fact, performs satisfactorily.

Table 2 also displays the results for the “smooth” versions of these intervals. All boot-
strapping was done from F,(w) * .25N (0,505,) instead of F,,(w). For the bootstrap pivotal,
percentile and bias-corrected percentile intervals, this meant sampling a data value with re-
placement from z;, z,, ...z, then adding .25 times a N¥(0, 8,5,) random variable. The approxi-
mate weights (18) were used for the non-parametric tilting interval. The smoothing improved
the coverage of all the bootstrap intervals, but surprisingly, it pulled the bias-corrected and
non-parametric tilting intervals away from the normal interval.

Finally, we tried the unsmoothed intervals with sample 50. All the intervals performed
quite well except the percentile interval which was biassed.

This problem was also studied by Schenker(1983). He obtained results for bootstrap
pivotal and percentile intervals; they are in qualitative agreement with those given here.



19

Example 2. The 10 percent Trimmed Mean

1000 Samples of size 20 were generated from the contaminated normal .90N(0,1) +
.10N(0,3) and central 90 percent confidence intervals were computed. For comparison with
the bootstrap interval, we computed the asymptotic interval (5 - t,gsajk,é + t.958;1) where
tos is the 95th percentile of the t;¢ distribution and aj; is the jackknife estimate of standard
deviation. The results are shown in Table 3. All the intervals had approximately the right
coverage; surprisingly, the bias-correction seemed to make the percentile interval worse.

10. Closing Remarks.

We have discussed a number of bootstrap techniques for constructing confidence intervals.
All are potentially useful as data-analytic tools because they are non-parametric and can be
applied in complex situations. Further work is needed to evaluate and improve these methods.
Our current research focusses the non-parametric tilting interval and its variants.
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Table 2
Confidence Intervals for the Sample Variance
Sample Size: 20
Monte Carlo size: 1000
Number of Bootstraps: 500

Ave Lower Ave Upper Level (Standard Error)

Normal .632 1.883 9.8% (0.94)
Pivotal .670 1.860 15.7% (1.15)
Percentile .496 1.357 23.3% (1.34)
Bias-C Percentlile .595 1.490 20.9% (1.29)
Tilting .634 1.552 20.2% (1.27)
Estimated Pivotal .587 1.520 19.3% (1.25)
Pivotal Smoothed .625 1.752 13.8% (1.09)
Perc Smoothed .525 1.452 19.3% (1.25)
Bias-C Smoothed .539 1.472 18.8% (1.24)
Tilting Smoothed .568 1.527 17.4% (1.20)

Séﬁéle Size: S50

Normal .723 1.404 10.3% (0.96)

Bootstrap Plivotal .750 1.431 11.7% (1.02)

Percentile .670 1.272 16.9% (1.19)

Bias—-C Percentlle .718 1.335 14.7% (1.12)

Tilting .738 1.372 13.4% (1.08)

Estimated Pivotal .718 1.341 13.3% (1.07)
Table 3

Conflidence Intervals for the 10% trimmed mean
Sample size: 20

Monte Carlo Size: 1000
Number of Bootstraps: 500

Ave Lower Ave Upper Level (Standard Error)

T-interval -.4427 .4590 10.1% (0.95)
Bootstrap Pivotal -.4585 .4764 8.3y (0.87)
Percentlile ~-.4616 <4777 10.7% (0.98)
Bias-C Percentile -.4825 .4953 8.3% (0.87)

Tilting -.4510 .4694 11.1% (0.99)



